• No products in the cart.
Checkout

BlinkTech

Latest News

AOS High Speed Camera – Crash Test

By Comments Off on AOS High Speed Camera – Crash Test

From minor paint damage to fatal road accidents: Every year, numerous damage reports reach the insurance companies. In order to investigate accidents and their consequences and to act preventively, a leading Swiss insurance company carries out its own accident research. AOS is a perfect choice for the high-speed recordings and with the performance and quality of their range of cameras.

In a collision test of a car with a child’s bike, the M-VIT in combination with ALED 2500 LED illumination system delivered excellent results.

Bicycle Crash M-VIT 2000fps onboard – Accident research from AOS Technologies AG

 

View M-VIT High Speed Camera.
View Lighting Solution

Additive Manufacturing Thermal Camera use

By Comments Off on Additive Manufacturing Thermal Camera use

Temperature is one of the key factors the quality of the process and thereby also the quality of the final product depends on. Thermographic cameras can for example be integrated directly into a laser sintering machine. They allow users to measure various temperature related process parameters.

Most relevant are the detection of the temperature distribution of the powder bed surface and the measurement of the melting temperature. Both can be realised while the laser is in operation (in-situ measurement) and for temperature ranges more than 2,000 °C.

 

Download PDF View Product

Case Study: Monitoring the Surface Temperature on Curing Epoxy Resin Samples

By Comments Off on Case Study: Monitoring the Surface Temperature on Curing Epoxy Resin Samples

Epoxy resin systems are mostly used as a matrix material in fibre composites. In a variety of manufacturing processes, the corresponding resin system is processed in a flowable state. The material only acquires its rigidity in a subsequent curing process. This is characterized by an exothermic chemical reaction with a pronounced temperature dependence.

During the curing process, a polymer with a strongly cross‐linked structure – also called a thermoset – is formed. Polymers generally have low thermal conductivity. Particularly in the case of thick‐walled components, these properties lead to an inhomogeneous temperature distribution with hotspots. This entails the risk that the material properties of the polymers deteriorate, for example, their strength decreases, porosity increases, or they even ignite. In addition, the cross‐linking curing reaction of epoxy resins is accompanied by a volumetric shrinkage of the material. This can sometimes cause strong mechanical residual stresses in the material, which can lead to the failure of the component before the actual loading. A precise numerical prediction of the temperature development in components is essential in order to develop suitable temperature controls in the manufacturing process of fibre composite components.

The Institute of Applied Mechanics of Clausthal University of Technology develops mathematical models based on a wide range of experimental studies. These material models reflect the mechanical, thermal, and in this case, the chemical behaviour of the polymer. Implemented in finite element software, they enable the prediction of the process or component behaviour. Against the background of the aforementioned challenges to process control in the production of fibre composite components, Dipl.‐Ing. Chris Leistner and his colleagues at the Institute of Applied Mechanics, among other topics, examined the pure epoxy resin system as part of their tests. They use temperature measurements on epoxy resin samples during curing in order to validate the model.

Download Case Study

*Case Study Provided from Infratec EU in conjunction with Clausthal University of Technology Institute of Applied Mechanics

Use of High-speed Thermography in Laser High-temperature Capillary Gap Brazing

By Comments Off on Use of High-speed Thermography in Laser High-temperature Capillary Gap Brazing

Lasers are extremely versatile tools in industry and manufacturing technology. Due to their flexibility, they serve as a key technology for implementing the goals of industry 4.0. Although laser cutting and welding are nowadays regarded as turnkey technologies, the majority of laser applications, for example joining of hybrid materials, 3D printing or ultra-short pulse processing, still require considerable research and development.

The Laser Application Center (LAC) of Aalen University intensively researches and develops new methods of laser material processing. Thus, innovative materials for Additive Manufacturing are developed and investigated within public R&D projects, including magnetic materials or electrical energy storage materials for electromobility. Another focus is lightweight construction. Here, among other things, mixed metallic compounds and hybrid lightweight structures made of aluminium and CFRP for CO2-efficient mobility concepts are investigated. The newly developed processes aluminium laser polishing and high-temperature capillary gap brazing are already being used in industrial projects.

View Case Study ImageIR

 

A-LED 2500, more light than ever

By Comments Off on A-LED 2500, more light than ever

Lighting is such an important part of gathering useful data from your high speed tests. Having a high powered, flicker free LED light  is probably the next most important tool to the camera itself.

The new AOS A-LED 2500 high power LED system with up to 4 miniaturized heads, with 150 Watts each comes now with higher efficiency electronics getting even more light out. For all connected LED heads the controller does have overheating alerts and short circuit protection. A-LED 2500 is ready for constant or strobing illumination synchronized to most brands of high speed cameras.

The system is High-g crash proof up to 100g /11msec. It comes with a charger and all necessary cables.

Paired with the AOS M-Vit (or any of their high G range), this light source is perfect for crash test applications

Cleaning the Sensor on your High Speed Camera

By Comments Off on Cleaning the Sensor on your High Speed Camera

Keeping your camera sensor clean and free of debris is very important to obtaining the best images possible. If you notice smudges or other spots showing up on the image it’s possible the sensor may need to be cleaned. The tech tip will go over four methods we use here in our lab for cleaning our sensors when needed. We recommend performing the cleaning steps that remove the smudge/dirt in the least invasive way possible.

1) The first method is to use a dust removal tool such as the one pictured aside. The lens mount can be kept on for this method and simply point the tool at the sensor and give it a few good squeezes of air. If the dust/dirt still is present then move onto the next method.

These ear syringes can be purchased from most chemists and typically cost less than $10

 

2) The second method involves using compressed air. Always ensure you are using clean compressed air and that you do not point the air directly at the sensor but shoot air at it from the sides. For this method and the two that come after the lens mount will need to be removed. Remove the four black screws holding in the mount and then apply the compressed air from the side of the camera as pictured below.

Compressed air can be purchased from Jaycar or similar hardware stores.

 

3) If compressed air hasn’t removed the debris or you are dealing with a smudge on the sensor then you will have to use a lens cloth to take care of the issues. Select a high quality disposable lens cloth and ensure you use a new cloth each time you clean a sensor. With the lens mount removed, use a single quick motion across the affected area and make sure to never re-use a portion of the cloth that has already touched the sensor.

4) The last method used if none of the other methods have been successful is using isopropyl alcohol and then wiping the sensor again with a lens cloth. Please ensure to use the highest purity isopropyl alcohol while using the same single quick motion wiping method across the affected area with a lens cloth.

*Elecrtro-static Discharge  events may cause damage to the image sensor. Take extreme care when cleaning the image sensor surface

  • Always take appropriate anti-static precautions when cleaning or working near the image sensor
  • Do not use any form of cleaning equipment using electrostatic or “charged fiber” technology
  • Always discharge electrostatic discharge build up in your body by touching a grounded metallic surface before working on a camera
  • Very gently, use only clean and dry air to remove dust
  • For stubborn contamination use high grade pure IPA with optical wipes of ‘clean room’ grade
  • wipe across the sensor in a single action, to not rub to avoid abrasive damage.

 

*Tech Tip originally created by Photron USA, see all their tech tips here

Infrared Camera in Electronics and Electrical Engineering

By Comments Off on Infrared Camera in Electronics and Electrical Engineering

The use of infrared thermography in electronics and electrical industry allows contactless measurement of surface temperatures with an infrared camera without contacting temperature sensors. It is an elegant, non-invasive optical temperature measurement method for simultaneous and temporally high-resolution detection of a number of measurement points.

 

Infrared Camera Enables Contactless Measurement in Electronics

The thermographic inspection of electronic components and assemblies is an established test procedure for failure detection and quality management – from the development of first prototypes to serial production. This enables, for example, the following to be detected:

  • Hotspots and atypical temperature distributions on the surface of printed circuit boards, integrated circuits and multichip modules
  • Increased contact resistances
  • Increased resistance due to constriction of wires
  • Hidden cracks in joints
  • Power losses due to RF mismatch
  • Incorrect thermal connections of heat sinks
  • Short circuits, soldering defects such as cold solder joints

Thermographic analysis during each development step provides important conclusions for the optimisation of heat management and the design of complex electronic assemblies. In electronics production thermographic temperature measurement is used as a versatile instrument for quality assurance. High-performance thermography has become indispensable for setting critical technological parameters and their permanent monitoring as well as for inline testing of products in the production process and their final functional test.

Download Brochure

IR Based Fever Detection

By Comments Off on IR Based Fever Detection

Major travel hubs like airports, seaports, railway stations and long-distance bus stations are one of the points on which the security measures of public authorities are aimed when infectious diseases such as Coronavirus (2019-nCoV), Severe Acute Respiratory Syndrome (SARS), Ebola Virus Disease (EVD) or Middle East Respiratory Syndrome Coro-navirus (MERS-CoV) cause global problems. From there, diseases can be effectively prevented from spreading further. InfraTec infrared cameras can be used for a corresponding thermal fever screening for passengers. Our thermographic systems enable a non-contact and areal coverage of the body temperature, which preferably is detected at the inner angle of the eye. Slightest differences and thus abnormal body tempera- tures can be displayed and will result in alarms. Performing such health screenings, e.g. via implementing temperature checkpoints, enable the acquisition of important informa- tion as a basis for decision-making for subsequent medical examinations of the selected people and thus serve to secure public areas.

Advantages of using infrared cameras for thermal fever scanning of passengers

  • Contactless and planar temperature measurement without external reference radiator
  • Large field of view for rapid checking of large groups of people
  • Resolution also of smaller areas of the skin (angle of the eye) from a safe distance
  • Display and evaluation in real time
  • Reliable temperature measurements based on low noise infrared detectors and precision calibration
  • Alarming at surpassing temperature thresholds (fever)
  • Easily installable all-in-one unit for continuous monitoring of persons and groups of people
Download Information Sheet View Product Range

Simultaneous Mapping of Wide Temperature Ranges

By Comments Off on Simultaneous Mapping of Wide Temperature Ranges

If you want to measure temperatures in a very wide range with an infrared camera, you normally do this in stages. The neutral density filters are changed gradually from time to time. Adjusted to a specific temperature range, they prevent high-intensity infrared radiation from striking the camera detector and falsifying the measurement result by depolarising the detector pixels. The new High Dynamic Range (HDR) function of the Infrared ImageIR® camera series from InfraTec eliminates the need for such interruptions. It enables measurement scenarios with extremely different temperatures to be recorded continuously.

Capture temperature ranges of over 1,500 K in one image thanks to six positions
The starting point of the HDR function is a fast rotating filter wheel. Designed for such tasks, it rotates at more than 5,000 revolutions per minute. The wheel provides up to six positions ensuring maximum flexibility for demanding measurement tasks. When recording in HDR mode, multiple thermograms with different integration times and different filters are recorded quickly in succession and compiled into an overall image with a high dynamic range.

To activate the HDR function, it is sufficient to select a previously defined calibration range. After that, the rotation of the rotating filter wheel and the composition of the thermogram starts automatically. The measuring range can span up to 1,500 K. In the case of the ImageIR® 8300 hp, this setting can be used to capture full-frame images with (640 × 512) IR pixels. Based on the frame rate synchronization of the camera with the rotational speed of the wheel, it is possible to achieve a temporal resolution of 350 Hz.

Each position of the individual neutral density filters has its own integration time and corresponding temperature calibration. The filters weaken the signal of the measurement objects within the desired temperature range, which reliably prevents interference effects. Users obtain high-contrast images in a wide temperature range characterized by high measurement accuracy.

Solution for measurement tasks with high object temperatures and spectral thermography
The tremendous benefits that come with it become clear as soon as users thermally analyse measurement objects that experience temperature changes over a very wide range within a very short time. The necessary changing of filters with a standard rotating filter wheel would interrupt the measurement for several seconds, rendering the results unusable. The HDR function makes it possible to quickly switch between calibration ranges up to the maximum camera frequency.

In addition to extremely high temperature applications, the fast rotating filter wheel offers a wide range of measurement options, in which different spectral ranges need to be measured. Finally, users can also use up to six spectral filters instead of neutral density filters. Equipped in this way, the ImageIR® infrared camera series supports the professional examination of materials with different radiation properties. Regardless of which components users choose for their desired model, the camera can always be used with a fixed rotating filter wheel.

 

View Product